A short synthesis of racemic uronic acids and 2,3-anhydrouronic acids*

RICHARD R SCHMIDT AND ROLF ANGERBAUER

Fakultat fur Chemie, Universität Konstanz, Postfach 5560, 7750 Konstanz (Germany)
(Received March 18th, 1980, accepted for publication June 2nd, 1980)

The Diels-Alder reaction of *trans-trans*-1 3-butadienylene diacetate with activated carbonyl compounds yields 1-O-acetylpseudoglycals (hex-2-enopyranoses) which are intermediates for the stereospecific synthesis of σ -threo-hex-2-enopyranosides² and for the regiospecific synthesis of 2,3-unsaturated nucleosides⁴ We now report on the application of this route for the synthesis of racemic mannulonic and taluronic acid and their 2 3-anhydro derivatives

A good yield of a 1-1 mixture of the racemic 1-O-acetylpseudoglycal derivatives 1 and 2 was obtained by a Diels-Alder reaction of trans-trans-1,3-butadienylene diacetate with methyl glyoxylate. The glycal 3 was formed as a by-product. Compounds 2 and 3 are rearrangement products of the cis-cycloadduct having the thi eo configuration. The components in the mixture 1-3 could be separated by chromatography, but this was unnecessary for further reactions. The reaction of the mixture 1-3 with methanol, when catalysed by boron trifluoride, gave a quantitative yield of the α -glycosides 4 and 5 therefore, 2 and 3 led exclusively to 5. Compounds 4 and 5 were easily isolated by chromatography. The structures of 1-5 were assigned on the basis of 1 H-n m r data and comparison with the corresponding butyl uronates.

(All the above products were racemic The D forms are depicted for convenience)

^{*}de novo Synthesis of Carbohydrates and Related Natural Products, Part 51

160 NOTE

TABLE I

1H-\ M R DATA" FOR 1-11

	H-1	H-2	Н-3	H-4	H-5	OAc	OCH ₃	CO_CH ₃	J _{1 2}	J_ 3	J _{3 1}	J _{4 5}
1	6 41	5 88	6 07	5 62	4 45	2 10		3 78	1 5	10	18	9
2	6 51	6 08	6 33	5 37	481	(6 H) 2 06 2 10		3 82	3	10	5	2 75
3	6 71	5 11	4 98	5 36	4 83	2 06 2 10	_	3 84	5 5	5 3 (<i>L</i>)	1 4 1 2)	15
4	5 02	5 85-	6 05	5 46	4 39	2 08	3 48	3 78	b	υ (° -	18	9
5	5 06	5 98	6 15	5 26	4 74	2 01	3 45	3 78	25	10	4 75	3
6	4 82	5 23	5 27-	5 14	4 31	1 99 2 03 2 12	3 45	3 76	2	ь	Ն	9 5
7	4 94	5 04	5 31	5 60	4 62	1 98 2 06 2 10	3 44	3 75	1 5	3 5	3 5	2
8	5 01	3 53 (2 H)		5 31	4 33	2 10	3 48	3 74	2 5	b	1	9 5
9	5 01		3 25	5 20	4 18	2 10	3 50	3 75	0	3 5	0	95
10	5 13		47	5 50	4 57	2 10	3 48	3 75	2	Ն	1	1 5
11	5 07	3 13		5 22	4 53	2 10	3 48	3 75	0	3 5	5	3 5

a80 MHz, CDCl₃ (internal Me₄Si) δ scale bNot determined

Treatment⁶ of **4** with hydrogen peroxide in *tert*-butyl alcohol with osmium tetroxide as catalyst effected *cis*-hydroxylation from the less-hindered side⁷ and, after acetylation, only the mannuronic acid derivative **6** was obtained Because of steric hindrance. *cis*-hydroxylation of **5** proceeded much more slowly than that of **4** and, after acetylation, the taluronic acid derivative **7** was the only product The structures of **6** and **7** were assigned on the basis of ¹H-n m r data (see Table I), which accorded with those for the corresponding *tert*-butyl uronates synthesised *via* a different route⁸

The reaction of 4 with 50% hydrogen perovide and benzonitrile gave 48% of a 3 2 mixture of the epovides 8 and 9 Likewise 5 afforded 59% of a 1 3 mixture of the epovides 10 and 11 AcO-4 was lost during the epoxidation, and re-acetylation was necessary for ¹H-n m r assignments The relative configurations of the epoxides 8-11 were assigned on the basis of J values (See Table I) and a comparison of the ¹H-n m r data with those of other 2,3-anhydrohexoses ^{9,10} The preferred formation of 8 and 11 is due to the influence of HO-4 in the intermediates ⁹ ¹¹

EXPERIMENTAL

General — Melting points are uncorrected ¹H-N m r spectra were recorded

NOTE 161

for solutions in CDCl₃ (internal Me₄Si) with a Bruker CW-80 spectrometer transtrans-1,3-Butadienylene diacetate was prepared from cyclo-octatetraene¹² Methyl glyoxylate (containing $\sim 2\%$ of acetic acid), obtained by oxidative cleavage of methyl tartrate according to the procedure used for butyl glyoxylate¹³, had b p 35–38°/12 mmHg

Methyl 1,4-du-O-acetyl-2,3-dudeoxy- α -DL-erythro- (1) and -threo-hex-2-enopyranuronate (2), and methyl 3,4-du-O-acetyl-DL-xylo-hex-1-enopyranuronate (3) — A solution of trans-trans-1.3-butadienylene diacetate (6 8 g, 40 mmol), methyl glyoxylate (5 3 g, 70 mmol), and hydroquinone (20 mg) in benzene (10 ml) was kept at 125° for 60 h in an autoclave The mixture was then concentrated and the residue was eluted from silica gel with ethyl acetate-benzene-light petroleum (b p 40-60°) (1 2 2) to give, first, 3 (1 1 g, 11°°) as a slightly yellow oil, $R_{\rm F}$ 0 49

Anal Calc for $C_{11}H_{14}O_7$ C 51 16, H, 5 47 Found C, 50 99, H, 5 38 Eluted second was 1 (2 65 g, 25%) as a colourless oil, R_F 0 45 Anal Found C, 51 25, H 5 49

Eluted third was 2 (2 42 g, 26%) as a colourless oil R_{Γ} 0 30

Anal Found C 51 01 H, 5 49

See Table I for 1H-n m r data

Methyl (methyl 4-O-acetyl-2,3-dideoxy-9-DL-erythro- and -threo-hex-2-eno-pyranosid)uronate (4 and 5) — To a solution of the foregoing mixture 1–3 (5.2 g 20 mmol) in methanol (15 ml) and anhydrous acetonitrile (500 ml) was added boron trifluoride etherate (5 ml) at 0–5° After 3 h, the mixture was neutralised with saturated aqueous sodium hydrogenearbonate (40 ml) and extracted with chloroform (3 × 500 ml), and the combined extracts were dried (Na₂SO₄) and concentrated The residue was eluted from silica gel with ethyl acetate-benzene-light petroleum (b p 40–60°) (1 2 2) to give, first, 4 (19 g, 41%) as a colourless oil $R_{\rm F}$ 0 47

Anal Cale for $C_{10}H_{14}O_6$ C, 52 17 H, 6 13 Found C, 52 26 H, 6 20 Eluted second was 5 (2 6 g, 56%) as a colourless oil, R_{Γ} 0 33 Anal Found C, 52 15 H, 5 99

See Table I for ¹H-n m r data

Methyl (methyl 2,3,4-tri-O-acetyl-2-DL-mannopyranosid)monate (6) — To a solution of 4 (230 mg, 1 mmol) in 6% hydrogen peroxide in tert-butyl alcohol (7 2 ml) was added 10% osmium tetroxide in tert-butyl alcohol (1 25 ml). After the disappearance of 4, excess of hydrogen peroxide was decomposed with a catalytic amount of manganese dioxide. The reaction mixture was concentrated to dryness, and the residue was acetylated with acet anhydride-pyridine (5 ml, 1 1) at room temperature. The product was eluted from silica gel with chloroform-ether (9 1), to give 6 (180 mg, 52%) as a colourless oil

Anal Calc for $C_{14}H_{20}O_{10}$ C, 48 28, H, 5 79 Found C 48 27 H, 5 67 See Table I for 1H -n m r data

Methyl (methyl 2,3,4-tii-O-acetyl-\sigma-DL-talopyianosid)uionate (7) — Using the method described above, 5 (230 mg, 1 mmol) was converted into 7 (170 mg, 49%), m p 129° (from cyclohexane)

162 NOTE

Anal Calc for $C_{14}H_{20}O_{10}$ C, 48 28. H 5 79 Found C, 48 25, H, 5 68 See Table I for ¹H-n m r data

Methyl (methyl 4-O-acetyl-2 3-anhydro- α -DL-allo- and -manno-pyranosid)ui onate (8 and 9) — To a solution of 4 (691 mg. 3 mmol) in methanol (10 ml) were added sodium hydrogencarbonate (1 g), benzonitrile (2 5 ml), and 50% hydrogen peroxide (2 5 ml) at room temperature. After the disappearance of 4 (1-3 days), excess of hydrogen peroxide was decomposed with a catalytic amount of manganese dioxide. The mixture was filtered and concentrated, and the residue was acetylated with acetic anhydride-pyridine (10 ml, 1 l) at room temperature. Elution of the product from silica gel with benzene-acetone (19 1) gave, first, 9 (130 mg, 18%) as a colourless oil $R_{\rm F}$ 0.28

Anal Cale for $C_{10}H_{14}O_7$. C, 48 78, H, 5 73 Found C, 48 88, H, 5 85 Eluted second was 8 (220 mg, 30%) as a colourless oil R_F 0 20 Anal Found C, 48 82 H, 5 72 See Table I for ¹H-n m r data

Methyl (methyl 4-O-acetyl-2,3-anhydro- σ -DL-gulo- and -talo-pyranosid)uronate (10 and 11) — Using the method described above 5 (691 mg, 3 mmol) was converted into 10 (100 mg, $14\frac{9}{2}$), isolated, first by chromatography as a colourless oil, $R_{\rm F}$ 0 30

Anal Cale for $C_{10}H_{14}O_7$ C, 48 78 H, 5 73 Found C 48 94 H, 5 85 Eluted second was 11 (330 mg, 45%) m p 125° (from cyclohexane), R_F 0 24

Anal Found C, 49 14, H, 5 74

See Table I for ¹H-n m r data

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie We thank BASF AG, Ludwigshafen, for a generous gift of cyclo-octatetraene

REFERENCES

- 1 Part 4 R R SCHMIDT AND R SCHEIBE Justus Liebigs Ann Chem, (1980) 1307-1320
- 2 R R SCHMIDT AND R ANGERBAUER, Angew Chem Int Ed Engl 16 (1977) 783-784
- 3 R ANGERBAUER AND R R SCHMIDT, Carbohydr Rev., 89 (1981) 193-201
- 4 S Y TAM AND B FRASER-REID Can J Chem 55 (1977) 3996-4001
- 5 R R SCHMIDT AND R ANGERBAUER Carbohydr Res, 72 (1979) 272-275
- 6 N A MILAS J H TREPAGNIER, J T NOLAN AND M I INIOPOULOS, J Am Chem Soc., 81 (1959) 4730–4733
- 7 O ACHMATOWICZ AND B SZECHNER Roc= Chem, 49 (1975) 1715-1724
- 8 J MIECZKOWSKI AND A ZAMOJSKI, Carbolivdi Res 55 (1977) 177-192
- 9 O ACHMATOWICZ AND B SZECHNER Carbohidi Res 50 (1976) 12-33
- 10 M CHMIELEWSKI, J MIECZKOWSKI W PRIEBE A ZAMOJSKI, AND H ADAMOWICZ Teirahedron, 34 (1978) 3325–3330
- 11 J THIEM AND J SCHWENTNER, Tetrahedron Lett (1978) 459-462
- 12 R M CARLSON AND R K HILL, Org Synth 50 (1970) 24-27
- 13 F J WOLF AND J WEIJARD Org Synth, Coll Vol IV, (1963) 124-126
- 14 S D YABLONOVSKAYA, N M SFRHTMAN, N D ANTONOVA, S V BOGATKOV, S M JAKIN, AND N S ZEFIROW. Zh Org Khim 6 (1970) 871–877